Issue 3, 2024

3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan

Abstract

The potential of 3D bioprinting in tissue engineering and regenerative medicine is enormous, but its implementation is hindered by the reliance on high-strength materials, which restricts the use of low-viscosity, biocompatible materials. Therefore, a major challenge for incorporating 3D bioprinting into tissue engineering is to develop a novel bioprinting platform that can reversibly provide high biological activity materials with a structural support. This study presents a room temperature printing system based on GelMA combined with carrageenan to address this challenge. By leveraging the wide temperature stability range and lubricating properties of carrageenan the room temperature stability of GelMA could be enhanced, as well as creating a solid ink to improve the performance of solid GelMA. Additionally, by utilizing the solubility of carrageenan at 37 °C, it becomes possible to prepare a porous GelMA structure while mimicking the unique extracellular matrix properties of osteocytes through residual carrageenan content and amplifying BMSCs’ osteogenesis potential to some extent. Overall, this study provides an innovative technical platform for incorporating a low-viscosity ink into 3D bioprinting and resolves the long-standing contradiction between material printing performance and biocompatibility in bioprinting technology.

Graphical abstract: 3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan


Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2023
Accepted
25 Nov 2023
First published
07 Dec 2023

Biomater. Sci., 2024,12, 738-747

3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan

X. Wang, J. Jiang, C. Yuan, L. Gu, X. Zhang, Y. Yao and L. Shao, Biomater. Sci., 2024, 12, 738 DOI: 10.1039/D3BM01489D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements